Time Complexity of Matrix Transpose Algorithm using Identity Matrix as Reference Matrix

Sanil Shanker KP¹, Mohammed Shameer MC²

^{1,2}Dept. of Computer Science Farook College, Kozhikode, India.

Abstract- This paper presents the time complexity of matrix transpose algorithm using identity matrix as reference matrix. We computed the time complexity of the algorithm as O(mn).

Keywords: Identity matrix, Reference matrix, Sanil's Matrix Transpose.

I. INTRODUCTION

Transpose of the matrix can be obtained by combining the characteristics of logical AND (\wedge) with logical OR (\vee) operations [1, 2]. In Sanil's matrix transpose algorithm, the identity matrix acts as the kernel of the transformation [3]. For example, let the matrix A_(3 x 4) be

17	2	13	7
41	11	29	19
19	3	23	11

The transformation can computed as:

Input:	$A_{(3 \times 4)}$	logica
--------	--------------------	--------

al AND

I₃

17	2	13	7	۸	1	0	0
41	11	29	19	^	0	1	0
19	3	23	11	^	0	0	1
					Ļ	↓	↓

17	41	19
2	11	3
13	29	23
7	19	11

Output: $A^{T}_{(4x3)}$

Here, identity matrix acts as the kernel to find the transpose.

II. TIME COMPLEXITY

ISSN:0975-9646

Let $A_{(m \times n)}$ and $B_{(m \times m)}$ be the input matrix of order $(m \times n)$ and the reference matrix of order $(m \times m)$ respectively. The value of c_{11} can be computed from the Figure- 1, as c_{11} := $(a_{11} * b_{11}) + (a_{21} * b_{21}) + (a_{31} * b_{31})$.

	$\mathbf{A}_{(m \times n)}$			B	(<i>m</i> x <i>m</i>)		
a ₁₁	a ₁₂	a ₁₃	a ₁₄		b_{11}	b ₁₂	b ₁₃
a_{21}	a ₂₂	a ₂₃	a ₂₄		b ₂₁	b ₂₂	b ₂₃
a ₃₁	a ₃₂	a ₃₃	a ₃₄		b ₃₁	b ₃₂	b ₃₃
					\downarrow	\downarrow	\downarrow
					c_{11}	c_{12}	c_{13}
					c_{21}	c ₂₂	c ₂₃
					c_{31}	c ₃₂	c ₃₃
					c_{41}	c_{42}	c ₄₃
		Fig. 1	$\mathbf{A}_{(n)}$	т х <i>т</i>)	:= C _{(n}	x m)	

To compute one cell value, there exists 'm' multiplications and 'm-1' additions. For the transformation, $c_{nm} \leftarrow a_{mn}$, the computational time is O(m). If there exists 'm' rows, time will be $O(m) + O(m) + \dots + m$ times = $O(m^2)$. For 'n' columns, the computational time is $O(nm^2)$.

In the case of identity matrix as reference matrix, ($a_{i} = m, j = n * I_{i} = m, j = m$) exists and other will be zero (Figure- 2) [2]. This implies the time for one multiplication operation will be O(1). If there exists '*m*' rows, time will be O(1) +*m* times = O(*m*). In general, for '*n*' columns, time = O(*mn*).

$\mathbf{A}_{(m \ge n)}$			$\mathbf{I}_{(i=m,\ j=m)}$				
a ₁₁	a ₁₂	a ₁₃	a ₁₄		I_{11}	0	0
a ₂₁	a ₂₂	a ₂₃	a ₂₄		0	I ₂₂	0
a ₃₁	a ₃₂	a ₃₃	a ₃₄	•	0	0	I_{33}
					\downarrow	\downarrow	\downarrow
					c ₁₁	c ₁₂	c ₁₃
					c ₂₁	c ₂₂	c ₂₃

c_{21}	\mathbf{c}_{22}	c_{23}
c ₃₁	c ₃₂	c ₃₃
c ₄₁	c ₄₂	c ₄₃

Fig. 2 $A_{(n \times m)}^{T} := C_{(n \times m)}$

III. SUMMARY

The computational time of matrix transpose algorithm using identity matrix as reference matrix is O(mn). Suppose, if the given matrix is a square matrix, the running time will be $O(n^2)$.

REFERENCES

- Sanil Shanker KP, An Algorithm to Transpose Zero- One Matrix. Int. Journal of Com. Sci. and Inf. Tech, Vol. 7 (4), 2016 , 1960- 1961.
- [2] Sanil Shanker KP, Will the reference Matrix act as the Kernel of Matrix Transformation?, Int. Journal of Math. Tre. and Tech, Vol. 36 (1), 2016, 80-81.
- [3] Mohammed Shameer. MC, Sanil Shanker. K. P, Java Implementation of Sanil's Matrix Transpose, Int. Journal of Com. Sci. and Inf. Tech. Vol. 7(5), 2016, 2145- 2146.